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Abstract: Accurate forecasting of project cost and schedule is essential for effective project control and decision-

making. Traditional earned value management (EVM) offers a deterministic view of performance but fails to 

capture the uncertainties inherent in dynamic project environments. This study introduces a probabilistic 

forecasting approach that integrates EVM with Monte Carlo simulation to model the stochastic behavior of cost 

and schedule performance indices. Two hypothetical project scenarios are analyzed to demonstrate the method’s 

applicability: one characterized by cost efficiency but schedule delay, and another by schedule progress but cost 

overrun. In both cases, cumulative project data—planned value, earned value, and actual cost—are used to 

generate probabilistic estimates of cost and duration at completion, along with confidence intervals and risk 

profiles. The results show that the proposed framework produces smoother and more credible forecasts while 

quantifying the likelihood of budget and schedule outcomes. This enhances the interpretability and reliability of 

EVM by linking performance trends with uncertainty, offering project managers deeper insights for proactive and 

risk-informed decision-making. 

 

Keywords: Earned value management, Monte Carlo simulation, project cost and schedule control, project 

performance forecasting. 

 

1. INTRODUCTION 

 

Accurate forecasting of project cost and completion 

time is a critical requirement for effective planning, 

decision-making, and risk mitigation throughout a 

project’s life cycle. In practice, construction and 

engineering projects face numerous sources of 

uncertainty—such as fluctuating productivity, scope 

changes, estimation errors, and market risks—that make 

purely deterministic forecasting methods less reliable. 

Among the established approaches, the earned value 

management (EVM) has been widely adopted as an 

integrated tool to monitor cost and schedule performance 

through metrics such as the earned value (EV), planned 

value (PV), actual cost (AC), the cost performance index 

(CPI), the schedule performance index (SPI), and 

forecasts such as estimate at completion (EAC). EVM is 

regarded as a standard framework for project control in 

many organizations (Anbari, 2003). 

Building on this foundation, various extensions have 

been developed to improve the predictive capability of 

EVM. For instance, the earned schedule has been 

proposed to address some of the shortcomings of SPI in 

schedule prediction. These efforts highlight that while 

EVM is a powerful tool for performance tracking and 

trend detection, its forecasting ability remains limited 

under complex or dynamic conditions (W. Lipke, 2012). 

The traditional form of EVM exhibits several notable 

weaknesses when applied to forecasting. Most 

importantly, it relies on a deterministic approach: 

indicators such as CPI and SPI are used directly as 

adjustment factors for EAC or estimated duration (ED) 

forecasts under the implicit assumption that future 

performance exactly mirrors past performance. This 

assumption can produce significant bias if performance 

trends shift over time or if only limited progress data are 

available at early stages. Empirical assessments also 

show that classical and extended EVM techniques often 

deliver uneven accuracy across project types and phases, 

particularly in high-uncertainty environments or when 

input variability is underestimated (Chen et al., 2016). 

To address these limitations, recent research and 

practice have moved toward combining EVM with 

probabilistic methods—notably Monte Carlo Simulation 

(MCS) and related risk-analysis techniques (Acebes et al., 

2015; Bonato et al., 2019; Duc, 2025; Vargas, 2004). By 
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modeling input variables (e.g., unit costs, productivity 

rates, activity durations) as random variables with 

specified probability distributions, MCS generates a 

range of possible outcomes rather than a single-point 

estimate. This approach enables the derivation of 

confidence intervals, exceedance probabilities, and 

sensitivity analyses for key performance indicators, 

thereby providing richer information to support proactive 

project management. 

This study introduces an alternative probabilistic EVM 

framework that integrates traditional EVM metrics with 

MCS to generate distribution-based forecasts of project 

cost and duration. Two illustrative case studies with 

hypothetical data are used to demonstrate the approach. 

The proposed approach offers a more realistic and 

transparent assessment of project performance than 

classical EVM, enhancing managers’ ability to anticipate 

overruns and devise timely mitigation strategies. 

 

2. METHODS 

 

This section presents the methodological framework 

for developing and evaluating the probabilistic EVM–

MCS approach for project cost and schedule forecasting. 

Section 2.1 introduces the synthetic datasets and 

reporting structure. Section 2.2 summarizes conventional 

deterministic EVM metrics as the baseline. Section 2.3 

explains the uncertainty modeling and parameter 

estimation. Section 2.4 describes the MCS and validation 

procedures, and Section 2.5 outlines the sensitivity and 

scenario analyses used to examine the influence of model 

parameters on forecast outcomes. 

 

2.1. Data and context 
In this study, two hypothetical project datasets are 

developed to demonstrate the proposed probabilistic 

EVM framework. Both datasets mimic typical project 

reporting structures. For each reporting period, the PV, 

EV, and AC are generated to reflect realistic project 

progress patterns and performance fluctuations. 

The first example represents a project that remains 

under budget but experiences schedule delays, whereas 

the second illustrates a case of cost overrun despite 

schedule progress being generally maintained. These 

contrasting conditions enable evaluation of the 

framework’s capability to handle diverse performance 

dynamics. The approach and data structure adopted here 

are compatible with actual project reporting systems, 

allowing future applications to extend directly to real 

project datasets once sufficient historical EV, PV, and 

AC records are available. 

To improve parameter estimation and avoid early‐

stage bias, we divide the project’s execution into a 

warm‐up period (initial reporting periods) and the main 

forecasting period. The warm‐up period is used to 

estimate statistical properties (e.g., mean, variance, 

autocorrelation) of performance indices (CPI, SPI) and 

cost/time growth behavior. Only after this warm‐up 

period we implement forecasting, using observed data up 

to each status date. 

 

2.2. EVM metrics and deterministic forecasts 

Traditional EVM metrics are used as the starting point 

for baseline forecasts. The cost performance index and 

schedule performance index are defined in Eqs. (1) and 

(2), respectively. 

 
EV

CPI
AC


 

(1)
 

 

EV
SPI

PV


 
(2)

 

Forecasts of the final cost at completion can be 

produced using standard formulas such as the CPI-only 

estimate at completion, the CPISPI composite, or other 

variants, as shown in Eqs. (3) and (4) (Anbari, 2003): 

 CPI

BAC
EAC

CPI


 
(3)

 

 SPI
SPI

CPI

BAC
EAC

CPI
 

  
(4)

 

Where BAC is the budget at completion. The estimate to 

complete (ETC) and variance at completion (VAC) are 

then calculated by Eqs. (5) and (6). 

 ETC EAC AC   (5) 

 VAC BAC EAC   (6) 

Optionally, the earned schedule technique can be 

incorporated to improve time forecasting by translating 

earned value into time-based metrics (W. H. Lipke, 

2003). These deterministic indicators form the baseline 

against which probabilistic forecasts are compared. 

 

2.3. Uncertainty Modeling 
While deterministic EVM metrics are widely used in 

practice, their point forecasts provide no information 

about the range of possible outcomes or the likelihood of 

overruns. To address this limitation, key EVM variables 

are treated as random variables whose distributions can 

be estimated from historical data. Candidate stochastic 

drivers include the time-varying (t) CPIt and SPIt, the 

incremental growth of EV between reporting periods, the 

variance of AC, and the amount of schedule slippage 

recorded in each period. 

Each random driver is assigned an appropriate 

probability distribution. For example, CPI and SPI can 

often be modeled as lognormal or normal variables due 

to their positive and skewed nature, whereas 

bootstrapping historical observations can be used as a 

nonparametric alternative when sample sizes are small or 

distributional assumptions are uncertain. Goodness-of-fit 

tests such as Kolmogorov–Smirnov (Stephens, 1986) are 

applied to check the plausibility of the chosen 

distributions. In this work, to estimate the parameters of 

these distributions, the Maximum Likelihood Estimation 

(MLE) method is applied, as it provides consistent and 

efficient estimates by maximizing the likelihood of 

observing the given sample (Pawitan, 2001). 

Because cost and schedule performance often move 

together, the correlation between CPI and SPI is 

estimated from historical data—typically using Pearson’s 

correlation coefficient —and incorporated into a 

multivariate sampling procedure (Vanhoucke, 2012). 

This approach ensures that simulated cost and schedule 

trajectories reflect the real-world interdependence of 

performance indices. 
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2.4. Monte Carlo Simulation 
The core of the proposed method is a MCS pipeline 

that converts the estimated distributions and correlations 

into a full forecast distribution of final project outcomes. 

The process consists of three main steps: 

Step 1: Sampling correlated performance indices. In 

each iteration of the simulation, a vector of stochastic 

drivers—(CPIt, SPIt)—is drawn from the fitted 

multivariate distribution, accounting for their 

correlations. 

Step 2: Projecting cost and schedule trajectories. The 

sampled values are applied to update the project’s cost 

and progress trajectory forward from the current period 

until completion. This produces one simulated path of 

EAC and ED under the derived stochastic behavior. 

Step 3: Aggregating forecast distributions. For a large 

number of samples (e.g., 200,000), the empirical 

distributions of EAC and ED are constructed. From these, 

the model extracts percentiles such as P50 and P80 

forecasts and calculates the probability of meeting cost 

and schedule targets (i.e,  Budget,  Deadline). 

Convergence of the simulation is monitored by tracking 

the stability of quantiles across iterations. 

This pipeline transforms the traditional single-point 

EVM forecast into a probability distribution, enabling 

decision-makers to gauge not only expected outcomes 

but also the likelihood of adverse scenarios. 

To evaluate predictive accuracy, the model is 

calibrated and validated using a rolling-origin 

backtesting procedure. At each reporting period t, the 

model generates probabilistic forecasts (P50, P80, full 

distribution) of EAC and ED, which are then compared 

to the realized outcomes once additional data become 

available. 

Forecast accuracy is assessed using several 

complementary metrics. Mean absolute error (MAE) and 

mean absolute percentage error (MAPE) quantify the 

deviation of point forecasts from realized outcomes. 

Calibration of probabilistic forecasts is evaluated through 

probability integral transform histograms, Brier scores, 

and the empirical coverage of prediction intervals 

(Gneiting & Raftery, 2007). These diagnostics ensure 

that the model is not only accurate on average but also 

well-calibrated in its uncertainty estimates. 

 

2.5. Sensitivity and Scenario Analysis 
Finally, sensitivity analyses are conducted to examine 

how changes in model assumptions and parameters affect 

forecast results. Tornado diagrams display the relative 

influence of input parameters such as the correlation 

coefficient (CPI, SPI), the standard deviations of CPI 

and SPI on the resulting EAC/ED distributions. In this 

study, the sensitivity analysis focuses on quantifying 

how ±25% variations in the correlation coefficient (CPI, 

SPI) and the variances of CPI and SPI affect the 

probabilistic forecasts of EAC at the 80th percentile. 

This provides practical insights into which parameters 

most strongly influence the reliability of project cost 

predictions. 

 

3. ILLUSTRATIVE EXAMPLES 

 

This section presents two illustrative examples to 

demonstrate the application of EVM analyses. In both 

cases, the PV, EV, and AC curves are examined over the 

project timeline. The PV is defined at 24 discrete time 

points, while the EV and AC are recorded at 20 time 

points, corresponding to the actual project updates. The 

project baseline assumes a budget at completion (BAC) 

of 10 billion. The examples are used to highlight how 

different project performance scenarios can be 

interpreted through EVM metrics, considering both 

deterministic and probabilistic perspectives. Particularly, 

Ex. 1 represents a project that is delayed but remains 

under budget, while Ex. 2 illustrates a project that is 

simultaneously behind schedule and over budget. 

 

3.1. Example 1 – a delayed but under-budget project 
Fig. 1 illustrates a project whose performance 

consistently shows delays in progress while maintaining 

cost savings. The EV curve remains below the PV, 

indicating that the actual work accomplished is less than 

scheduled. At the same time, the AC curve stays below 

the EV, suggesting that the project spends less than the 

value of the work completed. This situation represents a 

case of behind schedule but under budget, where the 

project is not progressing as planned but achieves cost 

efficiency. 

 

 
 

Fig. 1. Ex. 1 - Delayed but under-budget project. 

 

 
 

Fig. 2. Ex. 2 – Behind-schedule and over-budget project. 
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3.2. Example 2 – a behind-schedule and over-budget 

project 
 

Fig. 2 presents a contrasting case with Fig. 1, where 

the project suffers from both schedule delays and cost 

overruns. The EV curve again falls below the PV, 

reflecting late progress compared to the baseline plan. 

Unlike Ex. 1, however, the AC curve lies above the EV 

at the current time (t=20), showing that actual spending 

currently exceeds the earned value. This situation 

corresponds to a behind-schedule and over-budget 

project, considered the most unfavorable outcome in 

project performance management. 

This section presents and discusses the results 

obtained from the two illustrative examples, with the 

analysis covering evaluation periods from 6 to 20. The 

discussion is organized into three parts. First, the 

estimated costs at completion derived from deterministic 

and probabilistic approaches are compared to highlight 

their differences in stability and reliability. Second, the 

probabilities of completing the project under budget and 

ahead of schedule are evaluated to capture the likelihood 

of achieving key performance objectives under 

uncertainty. Finally, a sensitivity analysis is conducted to 

identify the main drivers of forecast variability and to 

assess how uncertainties in performance indices 

influence the upper-tail outcomes of the probabilistic 

estimates. 

 

4. RESULTS AND DISCUSSION 

 

This section presents and discusses the results 

obtained from the two illustrative examples, with the 

analysis covering evaluation periods from 6 to 20. The 

discussion is organized into three parts. First, the 

estimated costs at completion derived from deterministic 

and probabilistic approaches are compared to highlight 

their differences in stability and reliability. Second, the 

probabilities of completing the project under budget and 

ahead of schedule are evaluated to capture the likelihood 

of achieving key performance objectives under 

uncertainty. Finally, a sensitivity analysis is conducted to 

identify the main drivers of forecast variability and to 

assess how uncertainties in performance indices 

influence the upper-tail outcomes of the probabilistic 

estimates. 

 

4.1. Comparison between the deterministic and 

probabilistic estimations for the two examples 

Fig. 3 presents the estimated EAC for the two 

examples, obtained using both deterministic and 

probabilistic approaches over evaluation periods 6 to 20. 

These results provide an opportunity to examine how 

project performance conditions, reflected in the PV–EV–

AC trajectories, influence the stability and reliability of 

EAC forecasts. 

The deterministic EVM method estimates EAC by 

extrapolating the observed cost and schedule 

performance indices (CPI, SPI) at each reporting period. 

As shown by the blue curves in Fig. 3, these estimates 

fluctuate considerably because they depend solely on 

snapshot data from the current period. Short-term 

variations in CPI or SPI can cause large swings above or 

below the BAC, resulting in unstable forecasts (Fig. 

3(b)). Although simple and computationally efficient, 

deterministic EAC is highly sensitive to temporary 

disturbances and thus less reliable for projects with 

inconsistent performance.
 

 

In contrast, the probabilistic approach integrates the 

cumulative information of PV, EV, and AC from project 

start to the evaluation period, while explicitly modeling 

the correlation between CPI and SPI. As illustrated by 

the red curves (EAC, i.e., the mean of estimation) in Fig. 

3, probabilistic forecasts are smoother and more 

consistent, with prediction intervals (P10–P90) that 

represent plausible cost outcomes. This method provides 

not only an expected EAC but also the probability of 

deviation, enabling managers to understand both the 

central forecast and its uncertainty. Consequently, the 

probabilistic framework supports more informed and 

risk-aware decision-making than the deterministic 

alternative. 

In Ex. 1 (Fig. 1), the project consistently shows delays 

in progress (EV < PV) but spends less than the value of 

work accomplished (AC < EV). This situation represents 

a project behind schedule but under budget. The 

deterministic EAC, although fluctuating, tends to remain 

 
(a) 

 
(b) 

 

Fig. 3. Deterministic and probabilistic EAC forecasts:  

a, for Ex 1; and b, for Ex 2. 
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below the BAC, reflecting the persistent cost savings 

observed in the AC curve. The probabilistic analysis 

supports this assessment, with the mean EAC staying 

below BAC and the prediction interval remaining 

relatively narrow. The narrowness of the band reflects 

the stability of cost performance, as the project 

consistently spends less than expected, even though 

schedule progress lags. 

In Ex. 2 (Fig. 2), the project suffers from both 

schedule delays (EV < PV) and cost overruns (AC > EV) 

in several last periods. The unfavorable performance 

leads the deterministic EAC to frequently overshoot the 

BAC, particularly at later periods. The strong oscillations 

underscore how sensitive deterministic forecasts are to 

unstable cost performance, which reflects the fact that 

the AC curve does not always lie above the EV. The 

probabilistic approach, however, leverages accumulated 

information from the entire project history and 

incorporates the correlation between CPI and SPI. 

Consequently, the mean probabilistic forecast remains 

closer to the BAC at the 20th period, with more than
 
fifty 

percent chance of being lower. This outcome highlights 

the stabilizing effect of using historical performance 

trends: instead of projecting large cost overruns based 

only on short-term inefficiencies, the probabilistic 

method balances past and current information to yield a 

more realistic and credible forecast. 

Taken together, these results emphasize the trade-off 

between the two methods. The deterministic approach 

produces quick, point-based estimates that can be useful 

for immediate assessments but are prone to instability 

and overreaction to short-term variations. The 

probabilistic approach, on the other hand, integrates 

cumulative project data, considers the joint behavior of 

CPI and SPI, and provides prediction intervals that 

quantify risk. As a result, it offers a more comprehensive 

and stable assessment of likely project outcomes, making 

it better suited for decision contexts where uncertainty 

plays a critical role. 

 

4.2. Probability of under budget and ahead of 

schedule 

Since the MCSs generate statistical distributions of 

project outcomes, they enable direct estimation of the 

probabilities of cost overruns and schedule delays. In 

particular, one can compute the probability that the 

project will be completed within the budget at 

completion (P(EAC BAC) in the lower panel) and the 

probability that the project duration will not exceed the 

planned schedule(P(ED T)
 
in the lower panel). These 

probabilistic indicators provide valuable insights into the 

likelihood of meeting both budgetary and scheduling 

targets, thereby complementing the deterministic EVM 

forecasts. 

Fig. 4 illustrates the probabilistic assessment of project 

outcomes in terms of cost and schedule for the two 

projects. Specifically, the figure presents the probability 

of completing the project under budget (P(EAC BAC) 

in the lower panel) and the probability of finishing earlier 

than or on schedule (P(ED T) in the upper panel). 

These probabilities are obtained by integrating all 

observed performance data (PV, EV, AC) up to each 

evaluation period and accounting for the statistical 

correlation between the CPI and the SPI. 

For Ex. 1 (Fig. 4(a)), the probability of completing the 

project under budget quickly converges to nearly 100% 

after the 13th period. This outcome is consistent with the 

observed relationship among PV, EV, and AC: while the 

project consistently lags behind schedule (EV < PV), the 

AC remains lower than the value of work accomplished 

(AC < EV), as shown in Fig. 1. As a result, the 

probabilistic analysis indicates near certainty that the 

final cost will not exceed BAC. On the other hand, the 

probability of finishing ahead of schedule steadily 

declines over time, falling below 10% at the 20th period. 

This trend reflects the persistent gap between EV and PV, 

which points to chronic schedule delays. Taken together, 

Ex. 1 highlights a scenario where cost performance is 

favorable but schedule risk dominates, leading to a high 

probability of under-budget completion but a very low 

probability of early delivery. 

 
(a) 

 
(b) 

Fig. 4. Probability of under budget and ahead of 

schedule. 
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For Ex. 2 (Fig. 4(b)), the situation is markedly 

different. Namely, the project simultaneously 

experiences cost overruns (AC consistently above EV) 

and schedule delays (EV < PV) at the 19
th

 and 20
th

 

periods. As a result, the probability of finishing under 

budget shows a declining trend for these periods, 

dropping from near certainty at early stages to around 50% 

at the current time. This decline captures the worsening 

cost performance: as the project progresses, cumulative 

AC increasingly exceeds EV, undermining confidence in 

meeting the BAC target. In terms of schedule, the 

probability of completing earlier than planned also 

decreases gradually, showing a very low level (around 7–

8%) at the 20
th

 period. This reflects the compounding 

effect of delays, as EV persistently trails PV across 

reporting periods. Unlike Ex. 1, where cost efficiency 

compensates for delays, Ex. 2 presents an unfavorable 

situation on both dimensions—cost and time—leading to 

lower overall project success probabilities. 

The comparison between the two examples 

underscores the value of probabilistic analysis in 

distinguishing between different project performance 

patterns. In Ex. 1, deterministic EAC estimates alone 

might suggest fluctuating outcomes, but probabilistic 

analysis reveals near certainty of cost savings despite 

schedule risk. In Ex. 2, although deterministic estimates 

at later periods predict large overruns, the probabilistic 

perspective provides a more balanced view, indicating a 

roughly even chance of staying under budget by the end 

but very limited opportunity to recover schedule 

performance. 

In summary, probabilistic analysis enables project 

managers to move beyond point estimates and quantify 

the likelihood of achieving budget and schedule targets. 

By integrating cumulative PV, EV, and AC data, it 

highlights the contrasting nature of cost and schedule 

risks: projects may be under budget but late (Ex. 1), or 

simultaneously over budget and late (Ex. 2). These 

insights are critical for tailoring corrective actions—

whether focusing on accelerating progress or tightening 

cost control—to improve the chances of project success. 

 

4.3. Sensitivity analysis 
Sensitivity analysis is conducted to investigate how 

uncertainties in project performance drivers influence the 

overall probabilistic outcomes of cost and schedule. By 

systematically varying key input factors and quantifying 

their contributions to the variability of project results, 

sensitivity analysis provides deeper insights into which 

performance indicators exert the greatest impact on the 

predicted EAC. This approach complements the MCS–

based assessment by highlighting the most influential 

sources of risk, thereby supporting more effective project 

control and decision-making. 

In this study, the sensitivity results are assessed based 

on the 80
th

 percentile of the estimated cost at completion 

(i.e., P80% EAC), which corresponds to a conservative 

forecast ensuring a high confidence level. The analysis is 

performed at the current period (t = 20), when sufficient 

project performance data (CPI and SPI) have been 

accumulated to provide reliable probabilistic estimates. 

This setup allows identifying the dominant risk drivers 

affecting the upper-tail outcomes of project cost forecasts. 

Fig. 5 presents the results of the sensitivity analysis for 

the two illustrative examples, focusing on the effect of 

±25% changes in the correlation between CPI and SPI as 

well as the variances of these indices on the probabilistic 

estimate of EAC at the 80
th

 percentile. The analysis was 

conducted using data up to the current period. 

For Ex. 1 (Fig. 5(a)), the results show that the 

variability of CPI exerts a clear influence on the 

probabilistic cost forecast, though the overall magnitude 

of this effect is moderate. This outcome is consistent 

with the project’s performance data up to t = 20: the 

earned value has tracked relatively closely with the 

actual cost, and both remain in line with the planned 

value. Because cost and progress are reasonably aligned, 

fluctuations in CPI variance introduce changes in the P80 

EAC, but these shifts are not dominant. Meanwhile, 

changes in SPI variance and the correlation coefficient 

produce almost negligible variations, reflecting the fact 

that schedule performance up to t = 20 has remained 

steady and has not substantially driven the forecast. 

By contrast, for Ex. 2 (Fig. 5(b)), the impact of CPI 

variability on the P80 EAC is much stronger (about two 

times). At t = 20, the project’s EV lags behind PV, while 

AC continues to accumulate, leading to a cost overrun 

signal and a less favorable CPI. Under these conditions, 

the uncertainty in CPI directly amplifies the spread of the 

 
(a) 

 
(b) 

Fig. 5. Results of sensitivity analysis: (a) for Ex 1; and 

(b) for Ex. 2. 
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forecast distribution: increasing CPI variance by 25% 

shifts the P80 EAC upward more significantly than in Ex. 

1, while reducing CPI variance tightens the estimate. 

Again, SPI and correlation remain marginal factors, 

reflecting the lesser role of schedule deviations in 

shaping the probabilistic cost forecast. 

 

5. CONCLUSION 

 

This study examined the application of probabilistic 

extensions to earned value management for project 

performance forecasting. By analyzing two illustrative 

examples, the results show that probabilistic EVM 

significantly improves upon deterministic methods by 

providing more stable, accurate, and risk-aware forecasts. 

Unlike deterministic estimates, which fluctuate due to 

reliance on snapshot indices, probabilistic forecasts 

integrate cumulative project information (PV, EV, AC) 

and explicitly account for the correlation between CPI 

and SPI. This yields smoother projections and prediction 

intervals that can quantify uncertainty in completion 

costs. 

The probability-based analysis highlighted important 

contrasts between the two examples. In Ex. 1, although 

the project lagged in schedule (EV < PV), cost efficiency 

(AC < EV) ensured a near-certain probability of 

completing under budget but a very low probability of 

finishing on time. In Ex. 2, the cost performance 

deteriorated, leading to declining probabilities of success 

in both dimensions. These results demonstrate the value 

of probabilistic EVM in distinguishing risk patterns and 

enabling managers to prioritize corrective actions where 

they matter most. 

Sensitivity analysis further emphasized the role of 

performance drivers. At t = 20, CPI variability was found 

to be the dominant factor influencing the upper-tail 

forecasts of EAC (P80%), particularly in Ex. 2, where 

cost overruns were not consistent. In Ex. 1, where EV 

and AC were balanced, CPI variance played only a 

moderate role, while schedule-related factors were 

negligible. Overall, probabilistic EVM provides a 

comprehensive framework that not only forecasts likely 

outcomes but also identifies uncertainties and their 

drivers, supporting more informed and resilient project 

control. 

This study is limited by the use of hypothetical data 

and simplified assumptions, including stable 

performance indices and constant cost–time correlation, 

adopted to clearly illustrate the proposed methodology. 

In practice, performance indices may vary across project 

phases and be influenced by resource, risk, and market 

conditions. Future research will validate the framework 

using real project data, incorporate dynamic CPI–SPI 

relationships, and enable online updating of probabilistic 

parameters. Overall, probabilistic EVM represents a 

more risk-aware alternative to conventional approaches. 

By integrating Monte Carlo simulation, probability-

based metrics, and sensitivity analysis, it enables the 

estimation of both expected outcomes and quantified 

risks. Consequently, project forecasting under 

uncertainty is enhanced, supporting more robust and 

data-driven decision-making. 
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