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Probabilistic Forecasting of Project Cost and Schedule Using Earned Value
Management and Monte Carlo Simulation
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Abstract: Accurate forecasting of project cost and schedule is essential for effective project control and decision-
making. Traditional earned value management (EVM) offers a deterministic view of performance but fails to
capture the uncertainties inherent in dynamic project environments. This study introduces a probabilistic
forecasting approach that integrates EVM with Monte Carlo simulation to model the stochastic behavior of cost
and schedule performance indices. Two hypothetical project scenarios are analyzed to demonstrate the method’s
applicability: one characterized by cost efficiency but schedule delay, and another by schedule progress but cost
overrun. In both cases, cumulative project data—planned value, earned value, and actual cost—are used to
generate probabilistic estimates of cost and duration at completion, along with confidence intervals and risk
profiles. The results show that the proposed framework produces smoother and more credible forecasts while
quantifying the likelihood of budget and schedule outcomes. This enhances the interpretability and reliability of
EVM by linking performance trends with uncertainty, offering project managers deeper insights for proactive and
risk-informed decision-making.

Keywords: Earned value management, Monte Carlo simulation, project cost and schedule control, project

performance forecasting.

1. INTRODUCTION

Accurate forecasting of project cost and completion
time is a critical requirement for effective planning,
decision-making, and risk mitigation throughout a
project’s life cycle. In practice, construction and
engineering projects face numerous sources of
uncertainty—such as fluctuating productivity, scope
changes, estimation errors, and market risks—that make
purely deterministic forecasting methods less reliable.
Among the established approaches, the earned value
management (EVM) has been widely adopted as an
integrated tool to monitor cost and schedule performance
through metrics such as the earned value (EV), planned
value (PV), actual cost (AC), the cost performance index
(CPI), the schedule performance index (SPI), and
forecasts such as estimate at completion (EAC). EVM is
regarded as a standard framework for project control in
many organizations (Anbari, 2003).

Building on this foundation, various extensions have
been developed to improve the predictive capability of
EVM. For instance, the earned schedule has been
proposed to address some of the shortcomings of SPI in

schedule prediction. These efforts highlight that while
EVM is a powerful tool for performance tracking and
trend detection, its forecasting ability remains limited
under complex or dynamic conditions (W. Lipke, 2012).

The traditional form of EVM exhibits several notable
weaknesses when applied to forecasting. Most
importantly, it relies on a deterministic approach:
indicators such as CPl and SPI are used directly as
adjustment factors for EAC or estimated duration (ED)
forecasts under the implicit assumption that future
performance exactly mirrors past performance. This
assumption can produce significant bias if performance
trends shift over time or if only limited progress data are
available at early stages. Empirical assessments also
show that classical and extended EVM techniques often
deliver uneven accuracy across project types and phases,
particularly in high-uncertainty environments or when
input variability is underestimated (Chen et al., 2016).

To address these limitations, recent research and
practice have moved toward combining EVM with
probabilistic methods—notably Monte Carlo Simulation
(MCS) and related risk-analysis techniques (Acebes et al.,
2015; Bonato et al., 2019; Duc, 2025; Vargas, 2004). By
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modeling input variables (e.g., unit costs, productivity
rates, activity durations) as random variables with
specified probability distributions, MCS generates a
range of possible outcomes rather than a single-point
estimate. This approach enables the derivation of
confidence intervals, exceedance probabilities, and
sensitivity analyses for key performance indicators,
thereby providing richer information to support proactive
project management.

This study introduces an alternative probabilistic EVM
framework that integrates traditional EVM metrics with
MCS to generate distribution-based forecasts of project
cost and duration. Two illustrative case studies with
hypothetical data are used to demonstrate the approach.
The proposed approach offers a more realistic and
transparent assessment of project performance than
classical EVM, enhancing managers’ ability to anticipate
overruns and devise timely mitigation strategies.

2. METHODS

This section presents the methodological framework
for developing and evaluating the probabilistic EVM-
MCS approach for project cost and schedule forecasting.
Section 2.1 introduces the synthetic datasets and
reporting structure. Section 2.2 summarizes conventional
deterministic EVM metrics as the baseline. Section 2.3
explains the uncertainty modeling and parameter
estimation. Section 2.4 describes the MCS and validation
procedures, and Section 2.5 outlines the sensitivity and
scenario analyses used to examine the influence of model
parameters on forecast outcomes.

2.1. Data and context

In this study, two hypothetical project datasets are
developed to demonstrate the proposed probabilistic
EVM framework. Both datasets mimic typical project
reporting structures. For each reporting period, the PV,
EV, and AC are generated to reflect realistic project
progress patterns and performance fluctuations.

The first example represents a project that remains
under budget but experiences schedule delays, whereas
the second illustrates a case of cost overrun despite
schedule progress being generally maintained. These
contrasting conditions enable evaluation of the
framework’s capability to handle diverse performance
dynamics. The approach and data structure adopted here
are compatible with actual project reporting systems,
allowing future applications to extend directly to real
project datasets once sufficient historical EV, PV, and
AC records are available.

To improve parameter estimation and avoid early-
stage bias, we divide the project’s execution into a
warm-up period (initial reporting periods) and the main
forecasting period. The warm-up period is used to
estimate statistical properties (e.g., mean, variance,
autocorrelation) of performance indices (CPI, SPI) and
cost/time growth behavior. Only after this warm-up
period we implement forecasting, using observed data up
to each status date.

2.2. EVM metrics and deterministic forecasts
Traditional EVM metrics are used as the starting point
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for baseline forecasts. The cost performance index and
schedule performance index are defined in Egs. (1) and
(2), respectively.

EV

CPl=—— 1

AC 1
EV

SPI = — 2

PV @

Forecasts of the final cost at completion can be
produced using standard formulas such as the CPI-only
estimate at completion, the CPIxSPI composite, or other
variants, as shown in Egs. (3) and (4) (Anbari, 2003):

BAC
EACcp = a 3
BAC
EACCPIXSPI = CPI xSPI (4)

Where BAC is the budget at completion. The estimate to
complete (ETC) and variance at completion (VAC) are
then calculated by Egs. (5) and (6).
ETC =EAC-AC (5)
VAC = BAC -EAC (6)
Optionally, the earned schedule technique can be
incorporated to improve time forecasting by translating
earned value into time-based metrics (W. H. Lipke,
2003). These deterministic indicators form the baseline
against which probabilistic forecasts are compared.

2.3. Uncertainty Modeling

While deterministic EVM metrics are widely used in
practice, their point forecasts provide no information
about the range of possible outcomes or the likelihood of
overruns. To address this limitation, key EVM variables
are treated as random variables whose distributions can
be estimated from historical data. Candidate stochastic
drivers include the time-varying (t) CPI; and SPlI,, the
incremental growth of EV between reporting periods, the
variance of AC, and the amount of schedule slippage
recorded in each period.

Each random driver is assigned an appropriate
probability distribution. For example, CPI and SPI can
often be modeled as lognormal or normal variables due
to their positive and skewed nature, whereas
bootstrapping historical observations can be used as a
nonparametric alternative when sample sizes are small or
distributional assumptions are uncertain. Goodness-of-fit
tests such as Kolmogorov-Smirnov (Stephens, 1986) are
applied to check the plausibility of the chosen
distributions. In this work, to estimate the parameters of
these distributions, the Maximum Likelihood Estimation
(MLE) method is applied, as it provides consistent and
efficient estimates by maximizing the likelihood of
observing the given sample (Pawitan, 2001).

Because cost and schedule performance often move
together, the correlation between CPl and SPI is
estimated from historical data—typically using Pearson’s
correlation coefficient p—and incorporated into a
multivariate sampling procedure (Vanhoucke, 2012).
This approach ensures that simulated cost and schedule
trajectories reflect the real-world interdependence of
performance indices.
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2.4. Monte Carlo Simulation

The core of the proposed method is a MCS pipeline
that converts the estimated distributions and correlations
into a full forecast distribution of final project outcomes.
The process consists of three main steps:

Step 1: Sampling correlated performance indices. In
each iteration of the simulation, a vector of stochastic
drivers—(CPl;, SPl)—is drawn from the fitted
multivariate  distribution,  accounting  for their
correlations.

Step 2: Projecting cost and schedule trajectories. The
sampled values are applied to update the project’s cost
and progress trajectory forward from the current period
until completion. This produces one simulated path of
EAC and ED under the derived stochastic behavior.

Step 3: Aggregating forecast distributions. For a large
number of samples (e.g., 200,000), the empirical
distributions of EAC and ED are constructed. From these,
the model extracts percentiles such as P50 and P80
forecasts and calculates the probability of meeting cost
and schedule targets (i.e, < Budget, < Deadline).
Convergence of the simulation is monitored by tracking
the stability of quantiles across iterations.

This pipeline transforms the traditional single-point
EVM forecast into a probability distribution, enabling
decision-makers to gauge not only expected outcomes
but also the likelihood of adverse scenarios.

To evaluate predictive accuracy, the model is
calibrated and validated using a rolling-origin
backtesting procedure. At each reporting period t, the
model generates probabilistic forecasts (P50, P80, full
distribution) of EAC and ED, which are then compared
to the realized outcomes once additional data become
available.

Forecast accuracy is assessed using several
complementary metrics. Mean absolute error (MAE) and
mean absolute percentage error (MAPE) quantify the
deviation of point forecasts from realized outcomes.
Calibration of probabilistic forecasts is evaluated through
probability integral transform histograms, Brier scores,
and the empirical coverage of prediction intervals
(Gneiting & Raftery, 2007). These diagnostics ensure
that the model is not only accurate on average but also
well-calibrated in its uncertainty estimates.

2.5. Sensitivity and Scenario Analysis

Finally, sensitivity analyses are conducted to examine
how changes in model assumptions and parameters affect
forecast results. Tornado diagrams display the relative
influence of input parameters such as the correlation
coefficient p(CPI, SPI), the standard deviations of CPI
and SPI on the resulting EAC/ED distributions. In this
study, the sensitivity analysis focuses on quantifying
how +£25% variations in the correlation coefficient p(CPI,
SPI) and the variances of CPI and SPI affect the
probabilistic forecasts of EAC at the 80th percentile.
This provides practical insights into which parameters
most strongly influence the reliability of project cost
predictions.

3. ILLUSTRATIVE EXAMPLES

This section presents two illustrative examples to
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Fig. 1. Ex. 1 - Delayed but under-budget project.
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Fig. 2. Ex. 2 — Behind-schedule and over-budget project.

demonstrate the application of EVM analyses. In both
cases, the PV, EV, and AC curves are examined over the
project timeline. The PV is defined at 24 discrete time
points, while the EV and AC are recorded at 20 time
points, corresponding to the actual project updates. The
project baseline assumes a budget at completion (BAC)
of 10 billion. The examples are used to highlight how
different project performance scenarios can be
interpreted through EVM metrics, considering both
deterministic and probabilistic perspectives. Particularly,
Ex. 1 represents a project that is delayed but remains
under budget, while Ex. 2 illustrates a project that is
simultaneously behind schedule and over budget.

3.1. Example 1 — a delayed but under-budget project

Fig. 1 illustrates a project whose performance
consistently shows delays in progress while maintaining
cost savings. The EV curve remains below the PV,
indicating that the actual work accomplished is less than
scheduled. At the same time, the AC curve stays below
the EV, suggesting that the project spends less than the
value of the work completed. This situation represents a
case of behind schedule but under budget, where the
project is not progressing as planned but achieves cost
efficiency.
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Fig. 3. Deterministic and probabilistic EAC forecasts:
a, for Ex 1; and b, for Ex 2.

3.2. Example 2 — a behind-schedule and over-budget
project

Fig. 2 presents a contrasting case with Fig. 1, where
the project suffers from both schedule delays and cost
overruns. The EV curve again falls below the PV,
reflecting late progress compared to the baseline plan.
Unlike Ex. 1, however, the AC curve lies above the EV
at the current time (t=20), showing that actual spending
currently exceeds the earned value. This situation
corresponds to a behind-schedule and over-budget
project, considered the most unfavorable outcome in
project performance management.

This section presents and discusses the results
obtained from the two illustrative examples, with the
analysis covering evaluation periods from 6 to 20. The
discussion is organized into three parts. First, the
estimated costs at completion derived from deterministic
and probabilistic approaches are compared to highlight
their differences in stability and reliability. Second, the
probabilities of completing the project under budget and
ahead of schedule are evaluated to capture the likelihood
of achieving key performance objectives under
uncertainty. Finally, a sensitivity analysis is conducted to
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identify the main drivers of forecast variability and to
assess how uncertainties in performance indices
influence the upper-tail outcomes of the probabilistic
estimates.

4. RESULTS AND DISCUSSION

This section presents and discusses the results
obtained from the two illustrative examples, with the
analysis covering evaluation periods from 6 to 20. The
discussion is organized into three parts. First, the
estimated costs at completion derived from deterministic
and probabilistic approaches are compared to highlight
their differences in stability and reliability. Second, the
probabilities of completing the project under budget and
ahead of schedule are evaluated to capture the likelihood
of achieving key performance objectives under
uncertainty. Finally, a sensitivity analysis is conducted to
identify the main drivers of forecast variability and to
assess how uncertainties in performance indices
influence the upper-tail outcomes of the probabilistic
estimates.

4.1. Comparison between the deterministic and
probabilistic estimations for the two examples

Fig. 3 presents the estimated EAC for the two
examples, obtained using both deterministic and
probabilistic approaches over evaluation periods 6 to 20.
These results provide an opportunity to examine how
project performance conditions, reflected in the PV-EV—
AC trajectories, influence the stability and reliability of
EAC forecasts.

The deterministic EVM method estimates EAC by
extrapolating the observed cost and schedule
performance indices (CPI, SPI) at each reporting period.
As shown by the blue curves in Fig. 3, these estimates
fluctuate considerably because they depend solely on
snapshot data from the current period. Short-term
variations in CPI or SPI can cause large swings above or
below the BAC, resulting in unstable forecasts (Fig.
3(b)). Although simple and computationally efficient,
deterministic EAC is highly sensitive to temporary
disturbances and thus less reliable for projects with
inconsistent performance.

In contrast, the probabilistic approach integrates the
cumulative information of PV, EV, and AC from project
start to the evaluation period, while explicitly modeling
the correlation between CPI and SPI. As illustrated by
the red curves (ueac, i-e., the mean of estimation) in Fig.
3, probabilistic forecasts are smoother and more
consistent, with prediction intervals (P10-P90) that
represent plausible cost outcomes. This method provides
not only an expected EAC but also the probability of
deviation, enabling managers to understand both the
central forecast and its uncertainty. Consequently, the
probabilistic framework supports more informed and
risk-aware decision-making than the deterministic
alternative.

In Ex. 1 (Fig. 1), the project consistently shows delays
in progress (EV < PV) but spends less than the value of
work accomplished (AC < EV). This situation represents
a project behind schedule but under budget. The
deterministic EAC, although fluctuating, tends to remain
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Fig. 4. Probability of under budget and ahead of
schedule.

below the BAC, reflecting the persistent cost savings
observed in the AC curve. The probabilistic analysis
supports this assessment, with the mean ueac Staying
below BAC and the prediction interval remaining
relatively narrow. The narrowness of the band reflects
the stability of cost performance, as the project
consistently spends less than expected, even though
schedule progress lags.

In Ex. 2 (Fig. 2), the project suffers from both
schedule delays (EV < PV) and cost overruns (AC > EV)
in several last periods. The unfavorable performance
leads the deterministic EAC to frequently overshoot the
BAC, particularly at later periods. The strong oscillations
underscore how sensitive deterministic forecasts are to
unstable cost performance, which reflects the fact that
the AC curve does not always lie above the EV. The
probabilistic approach, however, leverages accumulated
information from the entire project history and
incorporates the correlation between CPl and SPI.
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Consequently, the mean probabilistic forecast remains
closer to the BAC at the 20th period, with more than fifty
percent chance of being lower. This outcome highlights
the stabilizing effect of using historical performance
trends: instead of projecting large cost overruns based
only on short-term inefficiencies, the probabilistic
method balances past and current information to yield a
more realistic and credible forecast.

Taken together, these results emphasize the trade-off
between the two methods. The deterministic approach
produces quick, point-based estimates that can be useful
for immediate assessments but are prone to instability
and overreaction to short-term variations. The
probabilistic approach, on the other hand, integrates
cumulative project data, considers the joint behavior of
CPI and SPI, and provides prediction intervals that
quantify risk. As a result, it offers a more comprehensive
and stable assessment of likely project outcomes, making
it better suited for decision contexts where uncertainty
plays a critical role.

4.2. Probability of under budget and ahead of
schedule

Since the MCSs generate statistical distributions of
project outcomes, they enable direct estimation of the
probabilities of cost overruns and schedule delays. In
particular, one can compute the probability that the
project will be completed within the budget at
completion (P(EAC < BAC) in the lower panel) and the
probability that the project duration will not exceed the
planned schedule(P(ED < T) in the lower panel). These
probabilistic indicators provide valuable insights into the
likelihood of meeting both budgetary and scheduling
targets, thereby complementing the deterministic EVM
forecasts.

Fig. 4 illustrates the probabilistic assessment of project
outcomes in terms of cost and schedule for the two
projects. Specifically, the figure presents the probability
of completing the project under budget (P(EAC < BAC)
in the lower panel) and the probability of finishing earlier
than or on schedule (P(ED <T) in the upper panel).
These probabilities are obtained by integrating all
observed performance data (PV, EV, AC) up to each
evaluation period and accounting for the statistical
correlation between the CP1 and the SPI.

For Ex. 1 (Fig. 4(a)), the probability of completing the
project under budget quickly converges to nearly 100%
after the 13th period. This outcome is consistent with the
observed relationship among PV, EV, and AC: while the
project consistently lags behind schedule (EV < PV), the
AC remains lower than the value of work accomplished
(AC < EV), as shown in Fig. 1. As a result, the
probabilistic analysis indicates near certainty that the
final cost will not exceed BAC. On the other hand, the
probability of finishing ahead of schedule steadily
declines over time, falling below 10% at the 20th period.
This trend reflects the persistent gap between EV and PV,
which points to chronic schedule delays. Taken together,
Ex. 1 highlights a scenario where cost performance is
favorable but schedule risk dominates, leading to a high
probability of under-budget completion but a very low
probability of early delivery.
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For Ex. 2 (Fig. 4(b)), the situation is markedly
different.  Namely, the project simultaneously
experiences cost overruns (AC consistently above EV)
and schedule delays (EV < PV) at the 19" and 20"
periods. As a result, the probability of finishing under
budget shows a declining trend for these periods,
dropping from near certainty at early stages to around 50%
at the current time. This decline captures the worsening
cost performance: as the project progresses, cumulative
AC increasingly exceeds EV, undermining confidence in
meeting the BAC target. In terms of schedule, the
probability of completing earlier than planned also
decreases gradually, showing a very low level (around 7—
8%) at the 20" period. This reflects the compounding
effect of delays, as EV persistently trails PV across
reporting periods. Unlike Ex. 1, where cost efficiency
compensates for delays, Ex. 2 presents an unfavorable
situation on both dimensions—cost and time—Ieading to
lower overall project success probabilities.

The comparison between the two examples
underscores the value of probabilistic analysis in
distinguishing between different project performance
patterns. In Ex. 1, deterministic EAC estimates alone
might suggest fluctuating outcomes, but probabilistic
analysis reveals near certainty of cost savings despite
schedule risk. In Ex. 2, although deterministic estimates
at later periods predict large overruns, the probabilistic
perspective provides a more balanced view, indicating a
roughly even chance of staying under budget by the end
but very limited opportunity to recover schedule
performance.

In summary, probabilistic analysis enables project
managers to move beyond point estimates and quantify
the likelihood of achieving budget and schedule targets.
By integrating cumulative PV, EV, and AC data, it
highlights the contrasting nature of cost and schedule
risks: projects may be under budget but late (Ex. 1), or
simultaneously over budget and late (Ex. 2). These
insights are critical for tailoring corrective actions—
whether focusing on accelerating progress or tightening
cost control—to improve the chances of project success.

4.3. Sensitivity analysis

Sensitivity analysis is conducted to investigate how
uncertainties in project performance drivers influence the
overall probabilistic outcomes of cost and schedule. By
systematically varying key input factors and quantifying
their contributions to the variability of project results,
sensitivity analysis provides deeper insights into which
performance indicators exert the greatest impact on the
predicted EAC. This approach complements the MCS—
based assessment by highlighting the most influential
sources of risk, thereby supporting more effective project
control and decision-making.

In this study, the sensitivity results are assessed based
on the 80™ percentile of the estimated cost at completion
(i.e., P80% EAC), which corresponds to a conservative
forecast ensuring a high confidence level. The analysis is
performed at the current period (t = 20), when sufficient
project performance data (CPl and SPI) have been
accumulated to provide reliable probabilistic estimates.
This setup allows identifying the dominant risk drivers
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Fig. 5. Results of sensitivity analysis: (a) for Ex 1; and
(b) for Ex. 2.

affecting the upper-tail outcomes of project cost forecasts.

Fig. 5 presents the results of the sensitivity analysis for
the two illustrative examples, focusing on the effect of
+25% changes in the correlation between CPI and SPI as
well as the variances of these indices on the probabilistic
estimate of EAC at the 80" percentile. The analysis was
conducted using data up to the current period.

For Ex. 1 (Fig. 5(a)), the results show that the
variability of CPl exerts a clear influence on the
probabilistic cost forecast, though the overall magnitude
of this effect is moderate. This outcome is consistent
with the project’s performance data up to t = 20: the
earned value has tracked relatively closely with the
actual cost, and both remain in line with the planned
value. Because cost and progress are reasonably aligned,
fluctuations in CPI variance introduce changes in the P80
EAC, but these shifts are not dominant. Meanwhile,
changes in SPI variance and the correlation coefficient
produce almost negligible variations, reflecting the fact
that schedule performance up to t = 20 has remained
steady and has not substantially driven the forecast.

By contrast, for Ex. 2 (Fig. 5(b)), the impact of CPI
variability on the P80 EAC is much stronger (about two
times). At t = 20, the project’s EV lags behind PV, while
AC continues to accumulate, leading to a cost overrun
signal and a less favorable CPI. Under these conditions,
the uncertainty in CPI directly amplifies the spread of the
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forecast distribution: increasing CPI variance by 25%

shifts the P80 EAC upward more significantly than in Ex.

1, while reducing CPI variance tightens the estimate.
Again, SPl and correlation remain marginal factors,
reflecting the lesser role of schedule deviations in
shaping the probabilistic cost forecast.

5. CONCLUSION

This study examined the application of probabilistic
extensions to earned value management for project
performance forecasting. By analyzing two illustrative
examples, the results show that probabilistic EVM
significantly improves upon deterministic methods by

providing more stable, accurate, and risk-aware forecasts.

Unlike deterministic estimates, which fluctuate due to
reliance on snapshot indices, probabilistic forecasts
integrate cumulative project information (PV, EV, AC)
and explicitly account for the correlation between CPI
and SPI. This yields smoother projections and prediction
intervals that can quantify uncertainty in completion
costs.

The probability-based analysis highlighted important
contrasts between the two examples. In Ex. 1, although
the project lagged in schedule (EV < PV), cost efficiency
(AC < EV) ensured a near-certain probability of
completing under budget but a very low probability of
finishing on time. In Ex. 2, the cost performance
deteriorated, leading to declining probabilities of success
in both dimensions. These results demonstrate the value
of probabilistic EVM in distinguishing risk patterns and
enabling managers to prioritize corrective actions where
they matter most.

Sensitivity analysis further emphasized the role of
performance drivers. At t = 20, CPI variability was found
to be the dominant factor influencing the upper-tail
forecasts of EAC (P80%), particularly in Ex. 2, where
cost overruns were not consistent. In Ex. 1, where EV
and AC were balanced, CPI variance played only a
moderate role, while schedule-related factors were
negligible. Overall, probabilistic EVM provides a
comprehensive framework that not only forecasts likely
outcomes but also identifies uncertainties and their
drivers, supporting more informed and resilient project
control.

This study is limited by the use of hypothetical data
and  simplified  assumptions, including  stable
performance indices and constant cost-time correlation,
adopted to clearly illustrate the proposed methodology.
In practice, performance indices may vary across project
phases and be influenced by resource, risk, and market
conditions. Future research will validate the framework
using real project data, incorporate dynamic CPI-SPI
relationships, and enable online updating of probabilistic
parameters. Overall, probabilistic EVM represents a
more risk-aware alternative to conventional approaches.
By integrating Monte Carlo simulation, probability-
based metrics, and sensitivity analysis, it enables the
estimation of both expected outcomes and quantified
risks.  Consequently, project forecasting under
uncertainty is enhanced, supporting more robust and
data-driven decision-making.
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